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The generation, and thence the dissipation, propagation and radiation, of waves in 
a compressible fluid subjected to a magnetic field is studied as an extension of the 
‘acoustic analogy ’ (Lighthill 1952) to magneto-acoustics. A formal theory of magneto- 
acoustic waves introduces (i) a single differential operator describing propagation, 
(ii) a dynamic and a magnetic tensor modelling generation and (iii) a dissipation 
tensor to complete the wave equation. The interpretation of these tensors indicates the 
magnitude of the physical processes of wave generation, by turbulence and inhomo- 
geneities, and of wave dissipation, by viscous and electrical resistance and heat con- 
duction. The total quadrupole components are classified according to the mode of 
emission. If the magnetic field or compressibility is neglected we obtain, respectively, 
‘ aerodynamic acoustics’ and a corresponding theory for Alfvh waves. These hydro- 
dynamic and hydromagnetic results contrast with magnetodynamics, when the 
magnetic field is dominant. The magneto-acoustic far field implies a law of directivity 
and intensity of radiation. The main results have been collected in three summary 
tables (see appendix). 

1. Introduction 
This paper is intended as an extension of recent research both on aerodynamic 

acoustics and on hydromagnetics. The subject implied is the study of waves in a free 
flow of a compressible fluid subjected to an external magnetic field. The main topics 
are generation, propagation, dissipation and radiation of magneto-acoustic waves. 

1.1. Sound generation by f iws  

The scientific study of the propagation of sound is almost as old as mathematics itself, 
the two having followed a generally parallel development from the pioneers in classical 
Greece (e.g. Pythagoras 6th century B.c.;  see Jeans 1968), through the founders of 
mathematical physics (e.g. D’Alembert 1747) to the treatises of the nineteenth century 
(Rayleigh 1877). The generation of sound by vibrating bodies (e.g. strings and mem- 
branes) and fluctuating mass sources (e.g. sirens and pipes) was studied extensively, 
these problems having the distinct property that the sources and the medium of 
propagation are physically separate. 

An area left largely unaddressed consisted of cases where the medium of propaga- 
tion is itself the source, such as the aerodynamic noise produced in a flow by its internal 
forcing mechanisms. This problem was originally considered by Lighthill (1952), who 
used a conceptual ‘analogy’ to ‘separate’ source from medium. Thence it was con- 
cluded that, from the point of view of generation of sound, turbulence can be modelled 
by a quadrupole, known as the Lighthill tensor. The main prediction of the ‘acoustic 
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analogy ’, namely the dependence of the intensity of radiation on the eighth power of 
the turbulent velocity, has been basically confirmed by experiment. 

This first success of the theory of aerodynamic acoustics has prompted various 
attempts a t  extension, to include the effects of solid boundaries (Curle 1955), boundary 
layers (Phillips 1960), convection of the source (Ffowcs Williams 1963) and moving 
surfaces (Ffowcs Williams & Hawkins 1968). The other mechanism of generation of 
sound naturally present in a flow is the convection of physical inhomogeneities (e.g. of 
density or temperature) in non-uniform flow. Their consideration for flow in ducts 
(Candel 1972) and past arbitrary solid bodies (Howe 1975a) has suggested an alterna- 
tive form of the ‘analogy’ (Howe 19753) which also renders explicit the effect of 
vorticity (Powell 1961). 

1.2. Fluids in a magnetic field 

The above developments were undertaken within the context of acoustics, taken as 
a branch of classical fluid mechanics. The latter describes accurately the properties of 
fluids in our closer environment, such as the water in oceans and basins, the air in the 
lower atmosphere and flows through various machines. However, outside a band of 
some tens of miles about the surface of the earth, natural fluids are ionized and sub- 
jected to magnetic fields whose effects can hardly be neglected. 

In  the mantle of the earth a complex interaction of dynamic and magnetic-fluid 
effects (Moffatt 1976) creates an overall magnetic field that is stable. This is significant 
up to a distance of several radii, capturing part of the solar wind in the magneto- 
sphere (Cowling 1957), which surrounds the earth with ionized gas. The sun, as well as 
other stars, is basically an ionized fluid held together by its gravitational attraction; it 
also has a permanent magnetic field, which may contribute to the explanation of such 
intriguing properties of the chromosphere as the rise in temperature with altitude 
(Lighthill 1967). 

The solar magnetic field could determine the migration of the bright spots observable 
from the earth (Alfvhn 1943); in a possibly similar manner stellar magnetic fields affect 
the formation and distribution of galactic gas clouds. On an earthly scale, various 
energy production schemes using plasmas have been proposed (e.g. Shermann & Sutton 
1965). The most promising, though difficult, is an ‘adaptation’ of the energy production 
process in the sun, namely controlled nuclear fusion.? 

1.3. Magneto-acoustic waves 

Compared with this vast background, knowledge on magneto-acoustic waves is rather 
limited, yet each new piece of information impresses scientific curiosity as subject 
worthy of further inquiry. Waves in an incompressible fluid subjected to a magnetic 
field were predicted theoretically by AlfvBn (1942), and subsequently observed experi- 
mentally (Lundquist 1949). The study of the propagation of magnetic waves was then 
extended to compressible fluids (Astrom 1950; Herlofson 1950) and to include gravity 
(Howe 1969), the combined effect of compressibility and gravity being considered by 
Moore & Spiegel (1964). The application of external force fields to an homogeneous 
compressible fluid causes waves to become anisotropic, with radiation ‘beaming ’ 
through conical pencils (Lighthill 1960). 

t See Proc. 2nd U N  Conf. on Peaceful Uses of Atomic Energy, 1958, Geneva, vol. 31, Fusion 
Devices. 
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The study of fluids in an external magnetic field has expanded mainly through its 
foundation on kinetic theory (Chapman & Cowling 1952), through the study of the 
stability of flows (Chandrasekhar 1961) and through various cosmological applications 
(AlfvBn & Falthammar 1962). However, at  least one fundamental question, perhaps 
the first to suggest itself if we know of the existence of waves, appears to be still 
unanswered: how are magneto-acoustic waves generated ? To address this question 
effectively requires consideration of propagation and dissipation and could lead to 
predictions on the radiation field. 

The purpose of the formal theory ( $  2) is to establish a complete wave equation from 
the exact magnetohydrodynamic (MHD) perturbation system ($ 2.1); the latter is f i s t  
eliminated to form the propagation operator ($ 2.2) and then reconsidered to identify 
dynamic and magnetic quedrupoles ( $  2.3). The aim of the subsequent inquiry into the 
underlying physical processes ($3)  is (i) to model the sources of waves ( $  3.1) and thus 
find their origin and magnitude, (ii) to assess the causes of dissipation ($3.2) and their 
effect on generation, and (iii) to classify the quadrupole components ($  3.3) according 
to modes of emission. 

The topics addressed in the concluding application to radiation fields ($4)  are: 
(i) consistency with aerodynamic acoustics ($  4.1) if the magnetic field is neglected 
and with the corresponding theory for Alfvkn waves if, instead, compressibility is 
ignored; (ii) the modes and sources in the hydrodynamic and hydromagnetic limits 
($4.2), in contrast with the magnetodynamic case of strong magnetic field; (iii) 
the wave far field ($4.3) and the directivity and intensity of magneto-acoustic 
radiation. For ease of reference the main results have been collected in three 
summary tables (see appendix), concerned respectively with propagation, generation 
and radiation. 

2. The complete wave equation 
The formal development of this paper is based on the general equations of a fluid in 

a magnetic field, reviewed exactly for perturbed Aow. The linear, non-dissipative part 
leads, by elimination, to a magneto-acoustic operator describing propagation. The 
remaining nonlinear or dissipative terms form tensors, of dynamic or magnetic origin, 
modelling generation and dissipation in a complete wave equation. 

2.1. Exact perturbation $ow 

The electric and magnetic fields E and H in an isotropic medium (e.g. a fluid of magnetic 
permeability p)  are specified by Maxwell’s equations, of which we mention the curl pair 

P a H  V A E = - - - + V A ( V A H ) ,  c at V A H = % J .  c 

To account for the motion of the fluid with velocity v we have added to the local time 
derivative aH/at the convection effect C A ( H  A v), forming the total time derivative 
DH/Dt (e.g. Landau & Lifshitz 1959, vol. 8, $49). In  the second equation we have 
neglected the displacement (4n)-1 DDIDt compared with the electric current J, which 
implies that V .  J = 0. Thus positive and negative charges must balance to give 
neutrality, although the fluid may contain electric currents. 

18-2 
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For a fluid (or charges) which is not too rarefied, such that statistical (rather than 
molecular) laws may be used, the current J and the electric field E are proportional. 
The coefficient generally depends on the magnetic field H, e.g. through a power expan- 
sion, with scalar coefficients to assure isotropy: 

E = (~r)-’J+6-’ J/\H+O(H2). (2) 

The first term (Ohm’s law), in which the electrical conductivity u is independent of H, 
specifies the current due to collisions, which predominate in high-density plasma. 
A t  medium densities charges may spiral (between collisions) in the magnetic field, 
resulting in a Hall current (the second term). 

The current J and electric field E are specified respectively by (1) and (2) if the 
magnetic field H is known. The latter is found by elimination to satisfy the equation 
of induction: 

aH/at + V A (H A v) = (c2/4npu) V2H + (c2/4npa) V A {H A (V A H)}. (3) 

This describes the dissipation x 3 c2/4npu, c2/4np5, of the magnetic field DH/Dt by the 
resistivity of the fluid, which consists of the ‘Ohmic’ component u-’ (e.g. Batchelor 
1950) and the ‘Hall’ component 6-’ (Lighthill 1960). Since the discussions of the Ohmic 
and Hall dissipative terms are similar, we shall, in the interest of brevity, retain only 
the former in the equations. 

For the description of the flow, it is sufficient to add to (3) the equation of continuity 

aplat + v .pv = 0, . ( 4 )  

which expresses conservation of mass, and the momentum equation, which states the 
balance between the momentum pvi and the hydrodynamic, viscous ( r i j )  and magnetic 
stresses: 

( a / a t ) ~ v ~  + ( a / a ~ j ) ( [ p v i ~ j  +pG.j] -7ij- ( ~ / 4 n )  [HiHj - 4H26i,]) = 0- ( 5 )  

It is noted that both the hydrodynamic and the magnetic stress (respectively the first 
and second square brackets) consist of anisotropic and isotropic parts, the latter 
being the hydrodynamic pressure p and the magnetic pressure pH2/8n. 

We assume that the flow results from the superposition on a constant mean state 
of rest of a non-uniform unsteady peI turbation: 

H = H,+h(x,t), p = p,+p’(x,t). (6) 

Besides terms that are linear or nonlinear in the perturbations, we may distinguish 
those that are non-dissipative or dissipative; the latter are associated with finite 
conductivity (a a), non-zero viscosity (r i j  + 0 )  and the non-isentropic part of the 
equation of state ( p  = pfp,  g)), which appears since Vp - ct V p  9 0, where c$ = (ip/ap)8 
is the speed of sound squared. The condition of non-existence of ‘magnetic charges’ 
V . H = 0 [consistent with (3)] leads without approximation to V . h = 0 because the 
mean state is consta.nt. 

The latter is of some slight use in simplifying the general equations (3)-(5) after 
substitution of the perturbations (6), in which we may now drop the subscript zero 
from mean-state constants (i.e. H,, p, become H,p). For subsequent reference we 
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collect the linear, non-dissipative terms on the left-hand sides and retain all other 
terms (on the right) so that the perturbation equations remain exact: 

2 .2 .  Propagation operator and modes 

To obtain a single equation describing the propagation of linear, non-dissipative 
magneto-acoustic waves, we could eliminate between the left-hand sides of (7 a-c) 
(setting the right-hand sides to zero). If the said equation is to remain non-trivial both 
in the limit of no magnetic field (h = 0) and in the limit of incompressible fluid (p’ = 0), 
the velocity perturbation v should be the wave variable. The elimination can be 
performed by noting that on application of apt to (7 c )  the other variables appear only 
in the form +/at or ahi/at, which can be re-expressed in terms of v by use of (7a, a): 

a2vi/at2 - c; a2vj/axi axj - ( , ~ / 4 n p )  ( H ~  a/aX,)2vi 

+ ( ~ / 4 n p )  (Hi Hj a 2 V k / a X j  axk -I- Hj Hk a2Vj/8Xi aXk  - H 2  a2V, /aXi  ax,) = 0.  (8) 

If the magnetic field is neglected ( H  = 0), this equation reduces to the first two 
terms; its curl then shows that the vorticity o = V A v is conserved in the mean state, 
i.e. a2u/at2 = 0. On taking the divergence a/axi, it  is concluded that the dilatation 
A = V . v propagates acoustically, according to 

{a2 /a t2  - C; azlax;) v . v = 0, c; = (aplap), = (9) 

i.e. radially (isotropically) with a phase speed co specified by the adiabatic compressi- 
bility of the fluid and proportional to the square root of pressure divided by density. 
The coefficient y is the adiabatic exponent, which is 8, and 6 respectively for mon- 
atomic, diatomic and polyatomic perfect gases. 

If the fluid is regarded as incompressible, i.e. V . v = auklax, = 0,  the propagation 
equation (8) reduces to the first, third and fifth terms. It follows that the velocity 
component v . 1 (with 1 = H / H )  along the magnetic field is conserved in the mean state, 
i.e, P(v.  l) /at2 = 0. The transverse component v A 1 propagates like an Alfvkn wave : 

{a2/at2 - c; a21aq (V A 1) = 0, c; = ru~2/4np = 2 p / p .  (10) 

That is, v A 1 propagates along magnetic lines of force 8/82 = lia/8xi with velocity 
proportional to the magnetic field (Alfvkn 1942,1948). The Alfvkn speed c1 corresponds 
to the speed of sound in that it is proportional to the square root of the magnetic 
pressure P = pH2/8n divided by the density. The adiabatic exponent is replaced here 
by the factor 2 ,  so that the ‘magnetic gas’ may be identified as a perfect gas whose 
molecules have N = 2 degrees of freedom transverse to the magnetic field, since 

In the general case of a compressible fluid (avk/axk =i= 0) subjected to a magnetic 
y =z 1+2/N. 
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field (Hi =l= 0 ) ,  the full propagation equation is of the form Q,{V,} = 0. The linear, 
homogeneous, second-order partial differential operator 

oij = sii ayat2 - C; a2/axi axt - c:(sit aZ/ai2 - 1, a2/ax.1 az) 
+ c;(zi q a X t  az - a2/axi axt) ( 1  1) 

describing propagation may be called the magneto-acoustic wave operator. It consists 
of: (i) second-order wave time dependence, allowing both propagating and standing 
waves; (ii) a term involving the speed of sound co and the dilatation A = 8vt/8xj, as 
for acoustic waves; (iii) two terms involving the Alfv6n speed c1 and directed derivative 
8/81, as for Alfvh waves; (iv) two terms combining magnetic derivatives 8/81 and the 
Alfvbn speed c1 with the dilatation av,/axt, representing magneto-acoustic interaction. 

The properties of waves between the contrasting limits of longitudinal, isotropic 
acoustic waves and transverse, one-dimensional Alfvbn waves may be studied by 
Fourier (series or integral) decomposition of the wave field. The functional form of 
a component V, = at exp [i(k. x - wt)], in which k is the wave vector and o the fre- 
quency, implies that oit(a/8x, 8/81, a/at) = - nii(k, kl ,  - w )  specifies, from ( l l ) ,  the 
magneto-acoustic dispersion matrix 

(12) IIq = {(c;+c:) kikj-W26ij)-cq(k.l) (kilj+kjli-k.l&ij).  

The propagation equation Oij{vi) = 0 transforms to rIijai = 0, so that the condition 
Inij[ = 0 for the existence of waves of non-zero amplitude (ai =# 0) defines the dis- 
persion relation w = w(k). 

Choosing the xl axis in the direction of the wave normal n = k/k and the x2 axis 
in the plane containing this vector and the magnetic field 1 = H/H (e.g. Landau & 
Lifshitz 1959, vol. 8, $52) gives 

n. .  = k2 -cq1,1, cy;-c2, 0 , (13) 1 4 0 0 c;z;-c2, 

co"+c;(l-l;)-c2* -c:l1l2 0 

in which we have introduced the phase velocity c* = w/k; since this does not depend on 
the frequency but on direction alone, magneto-acoustic modes are non-dispersive but 
anisotropic. The condition lIIitl = 0 can be satisfied by 1133 = 0, which defines an 
Alfv6n mode c* = cll . x that extends (from incompressible) to compressible fluid and 
has a velocity perturbation V, transverse to both the magnetic field and the wave- 
number: V3 = V,n A 1. 

This is uncoupled from the other two modes, whose perturbations are in the plane 
containing the direction of propagation and the magnetic field: V E (n, 1). Their phase 
velocities, calculated from nl1 nZ2 = Hi,, are 

c+ = t(lcon+cll(  ~ c o n - c l l ~ } ,  c+ > c, > c-, (14) 

and they result from linear superpositions of radial, acoustic waves con and magnetic, 
Alfv6n waves cll  propagating in the same ( + ) or opposite ( - ) directions. These modes 
are coupled, but may be distinguished as fast (c+) or slow (c-) according to whether 
their phase speed is larger or smaller than the (mathematical not physical) speed of 
sound co. 
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2.3.  Dynamic and magnetic quadrupoles 
In the consideration of dynamic and magnetic stresses, later to be identified as source 
or sink quadrupoles, we shall frequently encounter the symmetric tensor product of two 
vectors Ai and Bi, defined by 

Ai * Bj A, Bj + AjBi - A,  Bk 6ii. ( 1 5 )  

For example, if the pressure p is separated into a stagnation (constant) part po,  
a dynamic part ipv2 and a compressible part p' , the hydrodynamic stresses pv, vj - paij 
in an inviscid fluid take the form &pvi * vj + P I & .  The magnetic stresses are 

( - ~ P n ) ( H i + h i ) *  (Hj*hj), 

and imply a linear term ( - p/4n)  hi * Hi, whose divergence appears in (7 c ) .  
This notation is convenient in repeating the process of elimination between the 

left-hand sides of ( 7 a - c )  to form the propagation equation, with the difference that 
now all terms will be retained, to include dissipation and generation effects in an exact 
wave equation. The eliminrition is performed by applying a/at to ( 7 c ) ,  and substituting 
for @/at and ah/at on the left-hand side from (7a,b).  This gives 

The nonlinear terms of hydrodynamic origin form the dynamic tensor 

Rij = $pi * vj + (p' - tip' - aid) &, (17) 

which consists of convection stresses $pi * vj and stresses arising from the nonlinear 
terms p'-c;p'-ats' of the equation of state p = p(p ,s ) ;  here c; = (aplap), and 
a; = (ap/as),. The nonlinear terms of magnetic origin form the magnetic tensor Sij, 
given by 

- 

which consists of the magnetic stresses - (p/8n)  hi * hi and stresses due to transverse 
transport v A h of the magnetic field. 

If an external force field, e.g. gravity G ,  were applied, and thus appeared in the 
momentum equation ( 5 ) ,  it would give rise to a term p-l aGi/at in (16). Similarly a 
source, e.g. of mass Q, appearing in the equation of continuity as aQ,/at, would give 
a term -p-l PQ/at axi. Both would have to be incorporated in the dynamic tensor Ri3. 
The dissipative terms (linear or nonlinear, dynamic or magnetic) can be collected in 
a similar expression: the diasipation tensor, given by 
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which consists of stresses due to entropy production, viscosity and electrical resistance. 
In  addition to these there is a nonlinear term in the form of an acoustic operator 

(the fist two terms in (1 1)) to be precise) applied to the nonlinear mass flux (p'/p) v j .  
This term vanishes for Alfvbn waves (p' = 0) ,  so that it is sufficient to estimate its 
order of magnitude in the opposite extreme of acoustics. The density fluctuation is 
p' N pM& where Mo = v/co is the Mach number, and the whole term N a2(Miv)/at2. 
The dynamic tensor appears as p-l a2Ri,/at axj, with leading term - pv2 [see (17)], i.e. 

Thus the scattering term 

is negligible a t  Mach numbers Mo = v/co < 1 for arbitrary Alfvh number Ml = v/cl. 

operator mi, [see (1 I)] in the complete magneto-acoustic wave equation 
The remaining terms are linear and non-dissipative, and constitute the propagation 

This consists of (i) the magneto-acoustic wave operator (11) applied to the velocity 
perturbation, which represents propagation, (ii) the dissipation tensor (19), which acts 
as a sink quadrupole, and (iii) the dynamic tensor (17) and the magnetic tensor (18), 
which act as source quadrupoles, modelling generation. 

3. The physical process of generation 
The interpretation of the dynamic and magnetic tensors as source quadrupoles 

indicates the order of magnitude of wave generation by turbulence and inhomo- 
geneities. Dissipation by viscosity, heat conduction and electrical resistance acts as 
a sink of waves, except for the effect of heat production, which acts as a source. The 
overall magneto-acoustic quadrupole may also be classified by components, according 
to the modes of emission. 

3. I. Generation by turbulence and inhomogeneities 

The dynamic tensor Rij and the magnetic tensor Si, exhibit formal similarity, at  least 
in the first terms, which suggests that they be considered in parallel. The f i s t  term of 
the dynamic tensor is the convection stress 

(22) 

which consists of anisotropic stresses pviv, and the dynamic pressure +pv2. The first 
term of the magnetic tensor is the magnetic stress 

Rc.l.' 23 = - 1 zpvi * v j  = pv, v, - *pvz &i,, 

which consists of anisotropic stresses - (plan) hi h, and the magnetic pressure ph2/8r. 
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Both expressions consist of anisotropic stresses and a pressure term quadratic in 
their respective variables, the velocity perturbation v and the magnetic-field perturba- 
tion h. These are larger in the regions of hydromagnetic turbulence, which from the 
point of view of generation of magneto-acoustic waves are modelled by the quadrupoles 
(22) and (23). An example is the generation of waves in the lower photosphere of the 
sun, whose propagation into the chromosphere and subsequent dissipation could 
explain (e.g. Lighthill 1967) the rise in temperature with altitude. 

Rt?) = (p’ - c:p’ -a;,’) Sij (24) 
The second term 

z3 - 
of the dynamic tensor is the deviation from isentropic, homogeneous acoustics; it is 
non-zero if the speed of sound c,, (or a0) is not uniform, e.g. because of variations in 
density. The second term of the magnetic tensor, given by 

a 
-S$) = -f-{V A (v A h)iH.+HiV A (vA h),-H.V A (v A h)6,,), at 

represents the deviation from homogeneous Alfvhn waves in a perfectly conducting 
medium, for which the velocity and magnetic-field perturbations are parallel, i.e. 
v A h = 0. It is non-zero if the Alfvh speed c1 is not constant, e.g. because the external 
magnetic field H is non-uniform. 

Both second terms represent deviations from physical or constitutive homogeneity 
of the fluid flow, e.g. variations in density or in the external magnetic field. These are 
more important in regions containing fluid or flow inhomogeneities, which from the 
point of view of generation of magneto-acoustic waves are modelled by (24) and (25). 
Examples are solar spots (e.g. Alfvbn 1943) and also the rims of interstellar gas clouds, 
which stand out in observations from the earth because of their brightness. 

The order of magnitude of inhomogeneous sources can be comparable to that of 
turbulent sources, whose dynamic part (22) and magnetic part (23) scale as 

R N ipU2 ,  S - ( ~ 1 8 ~ )  H 2  (26) 

respectively on the dynamic and magnetic pressures. These are evaluated in the source 
regions, where the large perturbations in the velocity U and magnetic field H may be 
comparable to mean-flow values. The equation evinces the physical congruences of 
generation 

the velocity corresponding to the magnetic field and the mass densityp to the magnetic 
permeability p (divided by 4n), which is likened to a ‘magnetic mass ’. 

In a flow in which (27a, b) were equalities and the velocity v and magnetic field h 
were parallel, the dynamic and magnetic sources (23) and (24), which have opposite 
signs, would cancel. In  hydromagnetic turbulence (Batchelor 1950) the magnetic 
field h tends to be parallel to the vorticity V A V ,  so that a weakening of turbulent 
sources would occur in Beltrami flows, in which v is parallel to V A v. An example is 
the hydromagnetic flow in the mantle of the earth, which should be staljle (Moffatt 
1976), owing to the relative constancy of the earth’s magnetic field. 

The relative importance of magnetic and dynamic sources of magneto-acoustic 
waves is indicated by the ratio of the respective pressures 

W a ,  b )  U - H ,  p++p/4n, 
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which equals the product of the ratio of the 'masses' in (27 b) and the squared variables. 
If 7 < 1 the dynamic source Ri, predominates, if, instead, r ]  1 the magnetic source Si, 
is more important, and for 7 N 1 they are comparable. The condition of non-negligible 
magnetic pressure 9 7 1 ,  used to decide when a hydrodynamical study should be 
extended to magnetohydrodynamics, implies the possible existence of non-negligible 
magnetic wave sources. 

3.2. Dissipation through diffusion and resistance 
Dissipation in a magnetohydrodynamic flow is specified by the equation of energy 
(Landau & Lifshitz 1959, vol. 8, $51) 

which states that release of heat can occur owing to (i) viscous stresses Ti, in a shear 
flow avi/az,, (ii) conduction of heat K in a non-uniformly heated (VT =+ 0) fluid and 
(iii) electrical resistance l/a to currents J (Joule effeot J2/u)  in the fluid due to the 
non-uniform magnetic field [see (l)]. Since the mean state is one of rest (ds/dt = &/at), 
the first term in the expression (19) for the dissipation tensor becomes 

with /3 = a i / p T ,  showing separately the effects of viscosity, heat conduction and 
electrical resistance. 

The linear approximation to the viscous stresses (Landau & Lifshitz 1959, vol. 6, 

shows that they are due to the resistance of the fluid to shearing (avi/ax, + av,/axi) and 
compressive (av,/ax,) motion, with viscosities v and v'. The corresponding magnetic 
quantity is the current stress tensor, defmed by 

& 3 (c2/ l6n2u) (HiV2h, + H,V2hi - H .  V2hsi,). (32) 

Noting from ( 1 )  and V .  h = 0 that V 2 h  = - V A (V A h) = - (4n/c) V A J and 
H .  V 2 h  = (4n/c) V . (H A J), where J is the electric current, (32) specifies the stresses 
in the resistive medium (5 = l/u + 0) due to longitudinal (J .H)  and transverse 
(J A H) currents. 

The expression (30) for the dissipation tensor involves p = a i / p T ,  in which 
a; = (ap/as)p, so that p = (pT)- l  ( a p / a T ) ~ / ( a ~ / a T ) ~ .  From the definition of the specific 
heat at constant volume, C, = T ( ~ S / ~ T ) ~ ,  the thermodynamic factor may be cal- 
culated as /3 = (ap/aT),/pC, for an equation of state of the form p = p ( p ,  l'). For 
example, for a perfect gasp = p R T ,  sop = R / C ,  is a constant (Landau & Lifshitz 1969, 
vol. 5, chap. IV), respectively equal to 8, 5 and for monatomic, diatomic and poly- 
atomic molecules. As it has been derived from the entropy production terms, we may 
designate /I the heat release factor, and, since it appears with a minus sign in dissipation 
terms, it actually acts as a source. Thus a source of heat of strength W would give rise to 
an additional source - (/3/p) azW/at axi in the (right-hand side of the) complete wave 
equation (21). 
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The magnitude of viscous stresses may be estimated from (31)  as N vU/L;  however 
dissipation D, by viscosity occura both directly as a sink in (30) and indirectly, through 
heat release, as a source, resulting in the factor 1 - p. Dissipation D, by heat conduction 
is of this order divided by the Prandtl number Pr = vCp/K (Landau & Lifshitz 1959, 
vol. 6, §53), where C, is the specific heat a t  constant pressure and K the thermal 
conductivity; this is a process of heat release, acting as source, with coefficient -p. 
Electrical resistance resembles viscous resistance in duality: direct dissipation and 
indirect generation occur, resulting in the factor 1 - p  in 0,. In  the estimation of the 
current stresses c2H2/16n2aL2 in (32 )  a factor L/U appears because this is a term in 

0, U 0, K U 0, c2 1 H 2  aD,,lat. Thus 
cpNv.' - N - -  ----- - p  C,L' 1-p ~ ~ I T ~ u U L  (33) 

The orders of magnitude of dissipation by viscosity, heat conduction and electrical 
resistance, normalized respectively by the dynamic and magnetic source strengths (26) ,  
are given by 

These define (apart from a source/sink factor) the inverses of the Reynolds number 
Re, thePkclet number Pe and the magnetic Reynoldsnumber Me (Lehnert 1952), which 
indicate (without the common U L  term) the dissipation congruences: the dynamic 
viscosity v/p corresponds to the thermal diffusivity K/pCp and the effective resistivity 
c2/47r,w. These act as diffusion parameters x in a x avi/at term in the complete wave 
equation, causing a decay in the amplitude of propagating waves that is considerable 
(e-l) over distances d N cJx ,  where c* is the phase speed. 

In the generation region of large perturbations, dissipation could be significant in 
reducing these over moderate scales, damping the wave sources in the manner of a sink. 
The processes of dissipation would overwhelm generation for sufficiently low hydro- 
dynamic and magnetic Reynolds numbers: Re, Me < 1 -p. Heat production 
/?/Pe > (1 - 8) (ReF1+ Me-l) could still emerge as a source for small PBclet number, 
p > (Re-l+ Me-')/(Re-l+ Mep1 + Pe-l), corresponding to a predominance of heat 
conduction. Otherwise, if dissipation were still considerable, it  could be accounted 
for by factors 1 - (0, + D,)/R and DJS, which respectively reduce the dynamic and 
magnetic source strengths (26) to the effective values 

3.3. Classijication of emission components 
The dynamic and magnetic tensors have been shown to be quadratic in their respective 
variables, while the diasipation tenaor is a function of their derivatives: 

R cc v2, S cc h2, D cc a(v, h).  (36) 

Thus the magnetic generation and dissipation of waves is caused by the perturbation h 
from the constant external magnetic field H. Similarly, dynamic generation and 
dissipation would be due to the perturbation velocity v, even if the mean state were 
in uniform convection with velocity V. 
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In  the latter case the preceding inferences would remain valid in a frame moving 
with the mean flow; in returning to observations from rest, the velocity would be 
transformed to v‘ = V + v. Expressions quadratic in v‘ would be similar in terms of v,  
and derivatives of v’ equal those of v (because V is constant), leaving unaltered genera- 
tion and dissipation. However, scattering terms bilinear in v and V could appear, and 
in the wave operator ( 1  1) the local time derivative would include a convection effect and 
become the material derivative dldt E a/at + V . V. 

The interpretation of nonlinear and dissipative terms in the exact wave equation 
as sources or sinks, which was the conceptual advance of the original ‘ acoustic analogy ’ 
(Lighthill 1952), is simpler when turbulence and inhomogeneities are contained in 
a small region D. The stresses T can be calculated from the perturbation flow v’ in D,  
and taken as ‘model’ sources generating the wave field v propagating outside D:  

v = P{T(v’)}.  ( 3 7 )  

If the source region is multiply connected (e.g. separating positively and negatively 
charged clouds in an electric field) or non-compact (i.e. extensive on the scale of the 
wavelength), the wave functional P may be complicated by scattering effects. 

To study the interaction between the sources and the waves they generate (in D ) ,  
the basic analogy (37) could be taken as the initial step in an iterative approximation 

v ,+~  = F*{T(v’+v,)} = F*{T(v’+P*{T(v’+ ...)})}. 

The nth estimate v, of the wave field is superimposed on the perturbation v‘ before 
computing the ‘model source’ of the following estimate v , + ~  of the wave field. The 
near-field wave functional F*, valid in D, would be used, in which case the operafor 
series ( 3 8 )  should converge, provided the wave generation process is stable. 

The overall sourcelsink of magneto-acoustic waves is the sum of the dynamic and 
magnetic tensors, which act as sources, minus the dissipation tensor, which thus acts 

( 3 9 )  
as a sink: 

qj Rij + Xij - L&. 
This is the magneto-acoustic quadrupole, which appears [see (2l) l  in the complete wave 
equation 

as the forcing term of the propagation expression Oij{vj} = 0.  
It has been mentioned that there exist three modes of magneto-acoustic propagation 

($2.2): a slow and a fast mode with perturbations in the plane of the direction of 
propagation n and the magnetic field H1, i.e. V,E (n, 1) with a = 1 , 2 ,  and an uncoupled, 
transverse Alfvdn mode v3. Also the propagation operator (written in these co- 
ordinates) consists of a ‘square’ term nab (b = 1 , 2 )  plus a ‘corner’ term 033 
[03, = Ua3 = 0, as in ( 1 3 ) ] .  Thus Oij{vj} separates into Oab{vb} for slow and fast 
modes and ~33{v3} for the Alfvh mode, so that ( 4 0 )  may be decomposed into 

u33{~3) = - p - l ( a 2 ~ , ~ / a t  axb + a 2 ~ , , / a t  ax,), ( 4 1 b )  

which shows that the former modes are generated by the components Tai = (Tab, Tu3) 
and the latter by TSi E (T7b,T3p). Since qj is symmetric, the components Ta3 = T3, are 
the only ones that can actually generate all modes. 
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Thus the components of the magneto-acoustic quadrupole may be classified accord- 
ing to the modes of emission by the scheme 

(slow, fast) 
(42) 

(Alfvh) 

as follows: (i) the components Tab in the plane of the wave vector n and the magnetic 
field H1 emit slow and fast modes v, E (n, 1); (ii) the transverse component T33 emits 
the Alfv6n mode v3 = v3n A 1; (iii) the mixed components Ta3 = T3a emit all three 
(slow, fast and Alfvkn) modes. 

4. The limiting properties of radiation 
The formal and physical description of general magneto-acoustic waves should be 

consistent with the theory of aerodynamic acoustics (Lighthill 1952) when the magnetic 
field is neglected, and should yield a corresponding theory for Alfvh waves if, instead, 
compressibility is ignored. Some of these particular results should remain valid 
respectively in the limits of weak magnetic field (hydrodynamics) and near incompres- 
sibility (hydromagnetics), though greater contrast should be expected in the opposite 
limit of strong magnetic field (magnetodynamics). The asymptotic approximation to 
the wave field evinces the directivity and allows a dimensional estimate of the intensity 
of magneto-acoustic radiation. 

4.1. ' Acoustic ' and ' Alfvtn ' analogies 

If the magnetic field is neglected (H = 0) the magnetic tensor Sii and the magnetic 
dissipative term in Dij [see (19)] vanish; the hydrodynamic dissipative terms and the 
dynamic tensor Rii [see (17)], which form the total quadrupole (39), reduce to 

(43) T(0) - ij - pvivj + (P - ctp) Jij - 7i j ,  

known as the Lighthill tensor (Lighthill 1952). The condition H = 0 also reduces the 
propagation expression (1 1) to its first two terms, whose form is similar to that of the 
scattering effect (20); both are included in the complete wave equation (2.1): 

in which no approximations have been made. 
The exact wave equation (44) suggests that the source of acoustic waves is the 

Lighthill tensor (43). The wave variable is the velocity perturbation v, but since in the 
propagation region all variables are proportional, e.g. p'fp = vfc (Landau & Lifshitz 
1959, vol. 6, §63), their model sources must be equivalent. However this statement 
may become clearer if the exact equation of continuity (7 b)  is used to re-express (44) 
with the mass density p as the wave variable: 
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which is in the form of the original ‘acoustic analogy’ (Lighthill 1952), on which aero- 
dynamic acoustics is based. 

If the fluid is regarded as incompressible (a condition equivalent to dp/dt = 0, 
V .v = 0, p’ = 0 or co = 00) but is subjected to a magnetic field H + 0, a corresponding 
theory could be obtained for Alfvkn waves, based on an ‘ AlfvBn analogy’. The term 
of the propagation operator associated with compressibility can be cancelled in the 
hydrodynamic tensor (43), which reduces to 

(46) 

an incompressible Lighthill tensor. The scattering term that remains, namely the first 
term in (20), vanishes because p‘ = 0. 

All magnetic source/sink terms remain, those in the dissipation tensor Dii [see (19)] 
being collected with the magnetic tensor Sij [see (18)] to give 

Ti;)’ = PV,V, +psis - Tij, 

which could be designated the Alfve’n tensor. This is because the propagation expression 
reduces to Alfvh’s expression (lo), so that the wave equation (21) simplifies to 

This coniplete Alfvdn wave equation shows that the model sources of Alfvbn waves 
consist of a hydrodynamic and a hydromagnetic part: the incompressible Lighthill 
tensor Ti!)’ and the Alfvkn tensor Ti;) respectively. 

A theory of Alfvkn waves in fluids is thus analogous to aerodynamic acoustics, with 
the formal substitutions 

(49) 

which imply that (i) the speed of sound co [see (9)] corresponds to the Alfvhn speed c1 
[see (lo)], (ii) radial (or isotropic) derivatives a/axi correspond to derivatives along 
magnetic lines of force a/aZ and (iii) the Lighthill quadrupole Ti;) corresponds to the 
sum of the incompressible Lighthill quadrupole Ti;)‘ and the (complete) Alfvh 
quadrupole Ti?). 

(c0, aiax,, !rp) c-) (c1, a/az, T L ~ )  + ~g) ’ ) ,  

4.2. Hydrodynamics, hydromagnetics and magnetodynamics 

In  the acoustic limit we have neglected the magnetic field H altogether, a condition 
expressed, in view of the congruences (27a, b) ,  by {p/4np}* H 4 U .  If this restriction, 
which from (28) is equivalent to 74 < 1, is relaxed somewhat to 7 < 1, a weak, but 
non-negligible, magnetic field H N 7*U could exist. The magnetic pressure is still 
negligible compared with the dynamic pressure, so that the results of hydrodynamics 
still hold and, in particular, the Lighthill tensor Ti?) remains the sole source of waves, 
a hydrodynamic quadrupole. These are the conditions in the lower atmosphere of the 
earth, in rivers, basins and oceans, and in most types of machinery either driven by or 
driving fluids (e.g. hydraulic turbines and jet engines, respectively). 

Noting that ( C , / C , ) ~  = (p/4np) ( H / C , ) ~  = l;lM;, where Mo = U/co  is the Mach number, 
the phase speeds (14) may be expanded in power series. Thus at  O(l;lM;), 

c+ = co, c- = c1 1. n, (50)  
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which shows that (provided the Mach number is not high) the fast mode is identified 
with acoustic waves, while the slow and Alfvh modes coincide. The dominant fast 
mode inherits all the properties of acoustic waves, as in (45). There also exist weak 

a3 
74 

Alfvbn waves given by ($ - c; $) vi = - a2T(o)/at ax,. 

These are generated by the hydrodynamic quadrupole Ti;) but are of small amplitude 

In the Alfvh-wave limit the fluid was considered virtually incompressible, 
a condition expressed by cl/co < 1. If this restriction is relaxed to (c,/c,)~ < 1 (hydro- 
magnetics) the identification of modes (50)  is preserved. Because the Mach number M, 
is small (co is large), the equivalent condition q&?i < 1 permits the magnetic sources 
Ti;) to be significant, as well as the incompressible hydrodynamic quadrupole 
[(c,/c1)2 = (~,1ajr02)--1 9 11. Examples include nearly incompressible but ionizable 
liquids, such as sodium and potassium solutions, used in heat exchanger circuits of 
nuclear reactors, and also mercury in some laboratory experiments. The coincident 
slow and Alfvbn modes retain the properties of the latter, synthesized in (48). Fast 
modes, similar to weak acoustie waves, also exist, and are given by 

(w 74). 

being generated by the same sources as Alfvhn waves, but having a small [O(Mo)] 
amplitude. 

Greater contrast both with acoustic and with Alfvhn waves could result if the 
magnetic pressure dominated over the dynamic pressure (7 & 1). This is a situation 
opposite to both hydrodynamics and hydromagnetics in that the motion of the fluid 
is determined only by the strong magnetic field to which it is subjected (magneto- 
dynamics). Current research on controlled nuclear fusion is based on attempts to 
‘pinch’ a plasma in a magnetic field, though for most geometries experimented with so 
far (e.g. toroidal) wavelike instabilities develop in a way that allows the plasma to 
break confinement in a fraction of a second, the energy thus produced being still short 
of the hoped for ‘fusion reactor’. 

In the stated approximation (q & l) ,  the sources of waves are magnetic, forming the 
magnetodynamic qdrwpoZe Ti!) [see (47)]. The condition (c,/c,)~ = (qHt)-l < 1 allows 
expansion of the phase speeds (14) in power series, and to 0(7 - lMt2) ,  

c+ = cl, c- = cO1.n, (53) 

showing that, because the Alfv6n speed is larger than the speed of sound, the former 
corresponds to the fast mode and the latter to the slow mode. The direction of propa- 
gation of the modes has not changed, so that the Alfvkn waves propagate radially 
and the acoustic waves along magnetic lines of force. Only the Alfvh mode remains 
unaffected in speed and direction, but its sources are purely magnetic, i.e. Ti;). 

Reviewing the three magneto-acoustic wave modes in the magnetodynamic limit, 
we conclude that (i) the slow mode propagates at the speed of sound along magnetic 

(ii) the fast mode propagates spherically at  the Alfvbn speed, i.e. 

(a21at2 - c;a2/aX$} vi = -p-la2Ti;)/at ax,, (55) 
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and (iii) the Alfvh mode propagates at the Alfvh speed along magnetic lines of 
force, i.e. {ayatz - C ;  ayaz2) vi = -p-l a2qi/at ax,. (56) 

The sources of all modes are the turbulent, inhomogeneous a,nd current stresses, all of 
magnetic origin, forming the magnetodynamic quadrupole Ti;) [see (47)]. 

4.3. Intensity and directivity of radiation 

The magneto-acoustic wave equation (40) (with p-l included in q,) is transformed by 
Fourier analysis into the linear inhomogeneous system Hi, 8, = wkjqi, in which lli, is 
the dispersion matrix (12) and a caret denotes the Fourier transform; multiplication 
by the inverse dispersion matrix = A,/II, where A, is the co-factor of II, and 
n = Illi,\, gives the solution for the Fourier component Qi. If we consider each fre- 
quency component of the source separately, the wave field becomes a Fourier integral 
over a wave vector space d3k: 

v , ( x , t )  = J:: wkjqnAni exp ( ik  . x )  d3k. (57) 

In  order to calculate the field radiated in a direction n = k / k  it  is simpler (Lighthill 
1960) to align the x, axis with n, so that the phase factor reduces to exp (iklxl). The 
amplitude function wkj$,Ani for a souIce of finite duration and extent is regular in 
the whole complex k, plane. The only poles come from H = (nil( = 0, i.e. the con- 
dition ($2.2)  specifying the magneto-acoustic dispersion relation w = w ( k ) ,  which 
means that the total radiation field is the sum 2, of the contributions from each mode 
of propagation. 

Since the poles lie on the real axis Im kl = 0, the path of integration L is distorted 
from this axis to pass above the poles for which aolak, < 0, representing waves coming 
from infinity, and below the poles satisfying 8w/akl > 0, corresponding to waves 
emitted by the source. So, when the path L is closed by a semicircle of large radius in 
the upper half-plane, the domain D enclosed contains only the latter poles, thus 
meeting the radiation condition. The integration over k, in (57) thus yields 2ni times 
the residues at  these poles kls: 

vi = 2ni C, In wkj  Aniexp (iklxl) dk, dk3, anlak, 
leaving a dk,dk3 integration over the wavenumber surface IR defined by 

k,, = kl(k,, k3; w ) .  
I f  the wavenumber surface is plane, as for an Alfven mode, further evaluation of (58) 

requires knowledge of the Fourier spectrum !& of the source. If the wavenumber 
surface were singly or doubly curved (as for cylindrical and spherical waves, respec- 
tively), the latter being the ease of slow and fast modes (e.g. acoustic waves), one or 
both integrals may be evaluated by the method of stationary phase. The main con- 
tribution to the far field, to O(x- t ) ,  comes from the points d ( k . x )  = 0 on the wave- 
number surface where the normal aw/ak lies in the direction r = x/ lx l  of observation. 
In  the neighbourhood of a stationary point k;, the wavenumber surface can be 

(59) 
approximated by a quadric 3 

k1s = k; + ii 2 g a ( k a  -kc!zI2 
f l=2 

centred at ki, with principal curvatures g,. 
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This introduces in (58) two Gaussian integrals, whose evaluation shows that the 

3 

a=2 
ik,x,  + tn 2 sgng, 

wave field 
i4n2 kiPniAni v2 = - 
5 1  z Ig,g,l+ awl% 

propagates over the 4n2 angular portion of the unit sphere defined by the curvatures 
Iglg21-t as a conical pencil (Lighthill 1960) decaying inversely with distance, i.e. as 
l/xl. A change of sign of the double or single curvature, e.g. when a convergent beam 
becomes divergent after passing through a focus, causes a ‘phase jump’ of Aq5 = &r 
(Landau & Lifshitz 1959, vol. 2, $9 53, 59) or Aq5 = in respectively. 

To determine the radiation field in a Cartesian system, whose zl axis need not be 
aligned with the direction r of observation, (60) can be rendered rotationally invariant 
by the substitutions X l + r  = 1x1, klxl+k.x, aII/ak,-+laIl/akl and g1g2+g, the 
Gaussian curvature. The asymptotic magneto-acoustic wave field 

, i4n2 ukjcnAni 
Wi(X,t) = xs- exp ( i ( k .  x + q5)} 

r l91+. lanlakls 
has the following properties: (i) the field is radiated by all the stationary points k of 
each mode laII/akls, Xi; (ii) it decays three-dimensionally as l/r and is radiated coni- 
cally through a 4n2 radian sector with aperture specified by the Gaussian curvature 
Igl-4; (iii) it involves the Fourier spectrum of the source cm, the dispersion properties 
of the mode Ani, and the emission phase k .  x ;  (iv) the focal phase q5 is q5 = 0 for anti- 
elastic (g = g,g, < 0) beams, whileforsynclastic (g > 0 )  beamsit is q5 = infor divergent 
(9, > 0) and q5 = - ?pr for convergent (g, < 0) beams. 

The order of magnitude of the wave far field can be estimated by noting that 
An,/n - II;; - wU2 [see (12 ) ] ,  that lglh = Ig2g31t - k-1 and that P -  FL3is the total 
source strength, which is spread with mean density p over the domain or scale L3. The 
frequency of emission is characteristic of a flow velocity U ,  thus w - U / L  and 
k - u/c* N UILc,, and the source strength - ( R + S ) / p  [see (39), (40)] has both 
dynamic and magnetic contributions. Thus the dynamic part of the wave far field 

v - (Llr) ( U2/c$) p, N U 2  + (,u/4np) H 2 ,  (62 )  

scales as in aerodynamic acoustics ( N  U4, Lighthill 1952), but the magnetic term 
differs in possible directional effects c ; ~ ,  in the ratio of the ‘magnetic ’ and mechanical 
masses (,u/4np), and in the symmetrical dependence on velocity and magnetic perturba- 
tions ( - U2H2).  

The energy flux E - vPT is proportional to the total pressure P,, which consists 
of the dynamic and magnetic pressures; the equation of momentum VP, - pdvldt  
implies that PT N pv . dx/dt ,  so that the energy flux E - pv2u has the magnitude of the 
wave ‘kinetic energy’ and is transported with the ‘wave particle’ velocity u = dx/dt.  
This coincides with the group velocity u = a@k, which for anisotropic but non- 
dispersive waves, i.e. c * ( n )  = w/k with n = k/k, simplifies to u = &,/an. If we consider 
the energy flux across, say, a large sphere, a directional effect appears, as the com- 
ponent of the energy velocity in the radial direction is u . r, with r = x/lxl. When 
normalized with the phase velocity, this defines the directivity factor A = u. r/c*, 
which may be calculated from A = (r . a/an) log c*. 

The total intensity of radiation, estimated as the energy flux across this large sphere, 
is I N (E . r) rB - PAC, w2r2, and is constant because v = O(r-l) from (62). The result for 
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three-dimensional (e.g. slow, fast or acoustic) propagation would become I - pc*v2r for 
two-dimensional waves (e.g. cylindrical, as emitted by an infinite line source) because 
then the velocity field v = O(r-4). For one-dimensional (e.g. Alfvbn) waves there is no 
decay, and the intensity is just the mean energy flux: I - E .  In  the case of dissipative 
propagation the spectrum of the source should be taken as a four-dimensional function 
in wavenumber, frequency space, so that d3k is replaced by d3kdo in (57), resulting 
in a wave decay Ofr-4). These and other waves, such as those generated by inflexion 
edges etc. [cubic and higher-order terms in (59)] in the wavenumber surface (Lighthill 
1960), and the non-stationary terms neglected in (61), decay as v = O(ra) with a < - 1 
(spherically). The intensity of these terms is I oc r2v2 - O(+) with b = 2( 1 -a)  < 0, 
and decays to zero a t  infinity, which means that they do not radiate to the far field. 

Thus the only radiating component of the wave field is (62), and the far-field 
intensity is estimated from I - pc,ArW as 

I - p(L2/c5,) AU4(U2 + ( p / 4 ~ p )  H2}2. 

In  the hydrodynamic case I - p(L2/c5,) UB, so that the radiation is isotropic (A = 1) 
and scales on the eighth power of velocity, in agreement with aerodynamic acoustics 
(Lighthill 1952). In  the opposite limit when the magnetic pressure predominates 
(magnetodynamics), I N p(L21c5,) A(p /4~p)2  ( UH)4, so that the radiation is anisotropic 
(A = A(r)), involves the ratio of masses p/4np [see (27)]  and scales (symmetrically) 
on the fourth power of velocity and magnetic field, i.e. on (UH)*.  In  intermediate 
situations the anisotropy of radiation remains and the intensity still scales on the 
fourth power of velocity, now multiplied by a bi-quadratic expression in the velocity 
U 2  and magnetic field H2 with the ratio of masses p/4np as coefficient, as stated in the 
law of intensity and directivity of magneto-acoustic radiation (63). 
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Appendix. Summary tables 
The main results on propagation, generation and radiation have been collected in 

three summary tables. The material in the tables is included in the account of the 
corresponding topics in the main text ($9 2-4). Once the latter has been grasped, the 
following summary could serve as a short reference on magneto-acoustic waves. 
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Wave Propagation 
A > -  r- 

Mode Condition Speed Direction 

Magneto-acoustic 
Alfv6n VS C 1  1 

Slow Va G- tn, 1) 
Fast va c+ (n, 1) 

Limiting waves 
Acoustic H = O  CO n 
Alfve'n p' = 0 C 1  1 

Hydrodynamics 
Fast acoustic 7 4  1 CO n 
Slow f Alfv6n C1 1 

Fast acoustic CO n 
Hydromgnetics 

Slow Alfv6n ( C , / C ~ ) ~  < 1 C 1  1 

Fast GI n 
Slow 7 % 1  CO 11 
Alfvh C1 1 

Magnetodynamics 

Not- v3/ 1 n A 1, V,E (n,l); 7 3 (p/4?rp) (HIU)';  Mo = U/co, 

Directions n k / k ,  1 f H / H ,  r z x/lxl 
for co, cl, c+, c.- and T,, Ti;), c)', Ti:) (see table 3) 

wave normal magnetic observation 

TABLE 1. Propagation in a range of conditions. 

Source 
quadmpole 

Ml = U/c,  

Source 
generation 

Turbulence 
Quadratic stresses 

Order of - 

Rij Si5 
Dynamic Magnetic 

Convection Magnetic 
&PV2 ph2/8n 

4~ vi*vi - (p/4n) hi*hj 

... Pressure Dynamic Magnetic 
Inhomogeneitiap ( p ' - ~ ; P - a : s )  - ( p / 4 n ) H * V  A ( V A  h) 
Zero for homogeneous Acoustics Alfvh 
Deviation from constant CO C1 

Di5 cause 
A 
7 

Heat Electrical 
Sink Viscosity conduction resistance 

DiS.Sipati0n 
Diffusion parameter V K/QV (ca/4np) x l/a 

Heat production x - BoSi5 7 k l  & k / i h l  ajj K V ~ T  t (v  Ah)' 
Order o f  magnitude N VU/L ( K I C l r )  U/L t H a / U a  

Direct magnitude a/at aiilat - tHi*V'h, 

Dividing term 1 -B  -B  1 - B  

Relative to source VIP UL KIPQV U L  c8/4npuUL 
Inverse of Re Pe Me  

(Reynolds number) (PBclet number) (Magnetic Reynolds 
number) 

Notm A,* Bj 2 AiBj+AgBi-AkBkSij 

t f ca/i6na~; p (ap/az),/pc, = R/cv 

TABLE 2. General and dissipation quadrupoles. 
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Waves Acoustic Alfv6n 
Phase speed c," = caplap), = YPiP c: I ,~H'/4np = 2P/p 
Direction apx , aiai = 1, apXi 

Phase speed c+ = 3(8+ + B-1 c- = #(p+ -p-)  c1 
Modes Magneto-acoustic 

Perturbation E (n, 1) E (n, 1) Iln A 1 
Designation Fast S h  Alfv6n 

Note.B* Iconfell  = ~ c ~ + c ~ ~ 2 c o c , ~ . n ~ ~  

Meaning Operator Variable 
Acoustic aaiatz - c," aziax; A E V . v  
Alfv6n a 2 l a t Z  - C: a 2 i a z 2  V,=VA1 

Magneto-acoustic 0 ,5{v,} 
Wave, acoustic 

Alfvbn 
Interaction 

i5 I 8, a 2 l a t 2  - c: aslax, ax5 
- ~f(Sj5 azials - 1, aaiai ax,) 
+ c:(zi aziai ax, - aaiax, ax5) 

Quadrupole. C ] ~ ~ { V ~ }  = -p-l  a2T,@t axj 
Ti5 = Ri5 +Sij - D,j 
TF = p ~ i ~ j  + ( p  - $p)  S j j  - 
T:;) = Rjj - (c2 /16~~ci )  Vzh * HI 

Magneto -acoustic 
Hydrodynamic 
Magnetodynamic 

Effect Q G W 
Cause Mass source Applied force Heat source 

Monoidipole x - p-' c," azQ/at ax aa,p p aewiat ax, 
Note. Ti? =pv,vj+pSj5-ri5; for Ru,Si5,Di5 see table 2 

Intensity x pL2/cf:  Radiation Directivity 
Hydrodynamic 1 US 
Magnetodynamic (r . a/&) log c* ( P / 4 V )  U4H4 
Magneto -acoustic (1. a/&) log c* { U 2  + (,u/bnp) Hal2 U4 

TABLE 3. Radiation directivity and magnitude. 
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